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S

We consider the problem of maximum-likelihood estimation in case-control studies of
gene-environment associations with disease when genetic and environmental exposures
can be assumed to be independent in the underlying population. Traditional logistic
regression analysis may not be efficient in this setting. We study the semiparametric
maximum likelihood estimates of logistic regression parameters that exploit the gene-
environment independence assumption and leave the distribution of the environmental
exposures to be nonparametric. We use a profile-likelihood technique to derive a simple
algorithm for obtaining the estimator and we study the asymptotic theory. The results
are extended to situations where genetic and environmental factors are independent con-
ditional on some other factors. Simulation studies investigate small-sample properties.
The method is illustrated using data from a case-control study designed to investigate the
interplay of BRCA1/2 mutations and oral contraceptive use in the aetiology of ovarian
cancer.
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1. I

The case-control study design gives an efficient way of collecting covariate information
for epidemiological studies of rare diseases. Cornfield (1956) showed that the prospective
odds ratio of a disease given a covariate is equivalent to the retrospective odds ratio of
the covariate given the disease and thus prospective odds ratios are estimable from case-
control designs. For discrete covariates, Andersen (1970) and then more generally Prentice
& Pyke (1979) showed that fitting a standard prospective logistic regression that ignores
the retrospective sampling nature of the design yields the maximum likelihood estimates
of the regression parameters under a ‘semiparametric’ model that allows the covariate
distribution to be nonparametric. More recently, Rabinowitz (1997) and Breslow et al.
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(2000) used modern semiparametric theory to show that the prospective logistic regression
analysis of case-control data is efficient in the sense that it achieves the variance lower
bound of the underlying semiparametric model.
It is now believed that the risks of many complex diseases are determined by the

combined effects of genetic susceptibility G and environmental or non-genetic exposures E,
and, since studies of interactions, especially for rare exposures, typically require a large
sample size, efficient designs and analytical methods for gene-environment interaction
are vital.
A special feature of the gene-environment interaction problem is that it may often be

reasonable to assume that a subject’s genetic susceptibility, a factor which is determined
from birth, is independent of his/her subsequent environmental exposure. Standard
logistic regression analysis, being the semiparametric maximum likelihood solution for
the problem that allows an arbitrary covariate distribution, clearly remains a valid option
for analysing case-control data. However, the method may not be efficient because it fails
to exploit the gene-environment independence assumption. In general, under the case-
control design, the variance lower bound for estimators of the regression parameters under
particular constraints or models for the covariate distribution will be lower than that of
the more general model that allows a completely nonparametric covariate distribution.
In the past, several researchers have presented analytical methods that exploit the

gene-environment independence assumption. Piegorsch et al. (1994) noted that, under
gene-environment independence and the rare disease assumption, the multiplicative inter-
action parameter in the logistic regression model can be estimated as the odds ratio
between G and E among cases alone. Moreover, they observed that the corresponding
case-only estimator of interaction is more precise than the estimator of the interaction
parameter from traditional logistic regression analysis involving both cases and controls.
When data on both cases and controls are available, assuming rare disease and categorical
exposures, Umbach & Weinberg (1997) showed that maximum-likelihood estimators of
all the parameters of a logistic regression model can be obtained in a fairly general setting
by fitting a suitably constrained log-linear model to the data. They showed that, for simple
scenarios that involve dichotomous G, dichotomous E and no confounder, the log-linear
model and case-only analysis approach yields the same estimator of the multiplicative
interaction parameter in the logistic regression model. Modan et al. (2001), in a specific
application, noted that, under gene-environment independence and the rare disease
assumption, pr(E|G, D=0)=pr(E|D=0), where D=0 corresponds to disease-free, i.e.
control, subjects. Based on this, they argued that the disease odds ratio associated with
E among subjects with genotype G=g can be estimated by a logistic regression analysis
that compares the distribution of E among all controls, pr(E|D=0), with the exposure
distribution among cases with G=g, pr (E|D=1, G=g).
The methods have some limitations. First, they all require the risk of the disease to be

small for all levels of both genetic and environmental exposures. This assumption can lead
to substantial bias in the estimation of the odds ratio parameters even for diseases like
cancer, for which the marginal probability of the disease may be small in the population
but the disease risk may be high for certain combinations of genetic and environmental
exposures (Schmidt & Schaid, 1999). Secondly, the methods of Piegorsch et al. (1994) and
Modan et al. (2001) allow estimation of some, but not all, of the parameters of interest
in the general logistic regression model. Thirdly, some of the above methods have been
described in very simple settings involving only two factors G and E, and it is often not
clear how to exploit the gene-environment independence assumption in the most general
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setting that will, for example, allow for potential confounders or account for factors that
could induce association between G and E. The log-linear model framework described by
Umbach & Weinberg (1997) for categorical co-factors gives the most general method to
date for exploiting the gene-environment independence assumption and can handle some
of these issues. For a rich model with many covariates, however, the log-linear modelling
approach can easily become cumbersome and intricate. Moreover, in a rich model, the log-
linear specification would typically involve a large number of ‘nuisance parameters’ that
characterise the covariate distribution among the controls. When continuous covariates
are involved, the number of such nuisance parameters would even increase with the sample
size. The asymptotic theory for the lower-dimensional regression parameters of interest
in the presence of the high-dimensional nuisance parameters is nonstandard and has not
been studied rigorously under the underlying semiparametric setting.
In this paper, we develop a general framework for maximum-likelihood estimation

under the gene-environment independence assumption. The proposed method has
several unique aspects. First, it is exact in not requiring any rare-disease assumption.
Secondly, we develop the methodology in a very general setting so that it retains all the
flexibility of traditional logistic regression analysis, such as adjustment for confounders,
incorporation of continuous exposures and/or confounders and complex modelling of
the regression effects of the risk factors. Thirdly, we show how to incorporate external
information about the marginal probability of the disease in the population and hence
improve efficiency of parameter estimation. Fourthly, we show how to adjust for bias that
may arise when G and E may be related because of their dependence on other common
measured factors. Finally, we develop the methodology in a semiparametric framework
that allows the distribution of the environmental factors F(e) to be completely non-
parametric. Given that in a typical application Emight include many factors, both discrete
and continuous variables, nonparametric treatment of F(e) is attractive both for avoiding
complex modelling and for robustness.

2. E   

2·1. Model and identification

Let D be the binary indicator of presence, D=1, or absence, D=0, of a disease.
Suppose the prospective risk model for the disease given a subject’s genetic factors, G, and
environmental risk factors, E, is given by the logistic regression model pr(D=1|G, E)=
H{b0+m(G, E; b1 )}, where H(x)={1+exp(−x)}−1 is the logistic distribution function
and m ( . ) is a known but arbitrary function. Typically, in the standard logistic regression
model, one has m(G, E, b1 )= (G, E, G1E)b1 with the exponents of the parameters in b1
having the standard exposure odds ratio interpretation. However, more general forms
of m ( . ) could be of interest, especially for interaction studies where different forms of m ( . )
can be chosen to assess interaction at different scales; see Khouri et al. (1993, § 5.5.3).
We assume that the joint distribution of G and E is given by the product form
H(e, g)=Q(g)F(e), where Q and F are the marginal distribution functions of G and E,
respectively. Suppose that N0 controls and N1 cases are sampled from the conditional
distributions pr(G, E|D=1) and pr(G, E|D=0), respectively, and let (G

i
, E
i
)N
0
+N
1i=1
denote

the corresponding covariate data of the N0+N1 study subjects.
Before we describe estimation, it is useful to study the identifiability of the parameters.

In a nonparametric setting where no assumption is made about the form of the covariate
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distribution H, it is well known that neither H nor the intercept parameter b0 is identi-
fiable from case-control data (Prentice & Pyke, 1979). Under the assumption of gene-
environment independence, however, these results may not necessarily be true. Let B
denote the parameter space for b1 and letB05B denote the values of b1 so that m(G, E, b1 )
depends only on G or only on E, but not both. For example, suppose that m(G, E, b1 )
corresponds to a standard logistic regression model with b1= (b

G
, b
E
, b
GE
), where b

G
, b
E

and b
GE
denote the main effect of G, the main effect of E and the interaction between G

and E, respectively. In this case, the set B0 would consist of parameter values of the form
b1= (b

G
, 0, 0) or b1= (0, bE , 0), which correspond to either only the main effect of G or

only the main effect of E, respectively. Since b1 is well known to be identifiable from
case-control data under general nonparametric H, it follows trivially that b1 remains
identifiable when H is assumed to be of the formH=Q×F. The identifiability result for
the remaining parameters can be stated as follows.

L 1. For all b11B0,

pr (E=e, G=g|D=d, b
0
, b
1
, Q, F )=pr (E=e, G=g|D=d, b*

0
, b
1
, Q*, F*)

if and only if b
0
=b*
0
, Q=Q* and F=F*.

The proof of Lemma 1 is given in the Appendix. Thus, we note that a somewhat
surprising consequence of the gene-environment independence assumption is that, except
for some boundary situations, the intercept parameter of the logistic regression model b0
is theoretically identifiable from the retrospective likelihood of case-control data. Although
this may seem counter-intuitive, it is easy to see from the proof of Lemma 1 that in general
the identifiability of b0 is intrinsically related to the class ofH that is under consideration.

2·2. Profile likelihood estimation

We begin with the following parameterisation of the exposure distributions Q
and F. We assume that the genetic factor G for a subject can take values in a fixed
set {g0 , . . . , gJ}. Thus the distribution Q can be parameterised by the corresponding
probability masses {q0 , . . . , qJ}. Moreover, using population genetics theory, in many
situations the probabilities q

j
( j=1, . . . , J ) can be further modelled as q

j
=q
j
(h), for some

known function q
j
and some parameter vector h. For example, if G represents one of

the three possible genotypes a subject can have corresponding to a bi-allelic locus, the
population frequencies of the three genotypes could be specified in terms of the allele
frequency of one of the alleles under the Hardy–Weinberg equilibrium assumption for the
underlying population. If no population genetics model assumption is made to specify
the q

j
’s, we will assume in the above notation that h represents the vector of q

j
’s themselves.

For parameterisation of the environmental covariate E, we first assume that the non-
parametric maximum likelihood estimator of F can allow positive masses only within the
set E={e1 , . . . , eK} that represents the unique values of E that are observed in the case-
control sample of N0+N1 study subjects. Thus, for obtaining the maximum likelihood
estimator it is sufficient to consider the class of discrete F that have support points within
the set E. Any F in this class can be parameterised with respect to the probability masses
{d1 , . . . , dK} that it assigns to the points {e1 , . . . , eK}. Let n

ijk
denote the number of

subjects with D= i, G=g
j
and E=e

k
. Let the corresponding marginal frequencies for the

ith category of disease be n
i++
=N
i
, for the jth category of G be n

+j+
and for the kth
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category of E be n
++k
. The loglikelihood for the case-control data is then

L= log{lCC (b0 , b1 , h, d)}= ∑
N
0
+N
1

u=1
log{pr (D

u
|G
u
, E
u
) pr (G

u
) pr (E

u
)/pr (D

u
)}

=∑
ijk

n
ijk
log{P

ij
(e
k
, b
0
, b
1
)}+∑

j
n
+j+
log{q

j
(h)}+∑

k
n
+k+
log (d

k
)

−∑
i

n
i++
logq∑

lm
P
il
(e
m
, b
0
, b
1
)q
l
(h)d
mr , (1)

where P
ij
(e
k
, b0 , b1 )=pr(D= i|G= j, E=e

k
).

When the dimension of d is large, as could be expected when E consists of multiple
covariates and/or some of its components are continuous, direct maximisation of the
loglikelihood with respect to (b0 , b1 , h, d) may be numerically challenging or even
infeasible. An alternative approach is first to derive the profile likelihood of the data that
is obtained by maximising the likelihood with respect to d for fixed values of c= (b0 , b1 , h)
and then to maximise the profile likelihood with respect to c. If d@ (c) denotes the value of d
that maximises the likelihood for fixed c, the profile loglikelihood is then L (c, d@ (c)}. In
Lemma 2, we state an equivalent representation of L {c, d@ (c)} that is computationally useful.

L 2. Define the parameters m
i
=n
i++

/{N pr (D= i )} for i=0, 1 and let

P*
ij
{e
k
; c, m= (m

0
, m
1
)}=

P
ij
(e
k
; b
0
, b
1
)m
i
q
j
(h)

W

i
W

j
P
ij
(e
k
; b
0
, b
1
)m
i
q
j
(h)

. (2)

T he profile loglikelihood L {c, d@ (c)} can be computed as L *{c, m@ (c)}, where

L *(c, m)=∑
ijk

n
ijk
log P*

ij
(e
k
; c, m), (3)

and m@ (c)={m@
0
(c), m@

1
(c)} is defined by the solution of the equations

n
i++
=∑
k
∑
j

n
++k

P*
ij
(e
k
; c, m) (i=0, 1). (4)

The proof of the lemma is given in the Appendix and is developed following tech-
niques in Scott & Wild (1997). The main consequence of Lemma 2 is that L {c, d@ (c)} can
be computed without having to maximise the likelihood L (c, d) numerically with respect
to the potentially high-dimensional nuisance parameter d. Instead, L {c, d@ (c)} can be
obtained in closed form up to only two additional parameters m= (m0 , m1 ), which in turn
are defined as the solution of two equations given in (4). The result of this lemma can
also be compared to the classical result of Prentice & Pyke (1979) that, when the exposure
distribution is unspecified, maximisation of the retrospective likelihood can be achieved
by simply fitting the prospective logistic model to the data ignoring the retrospective
design. Lemma 2 gives the corresponding simplification for maximum-likelihood esti-
mation under the gene-environment independence assumption and unspecified distribution
of E. Prentice & Pyke (1979) also essentially showed that the maximum likelihood esti-
mator of the logistic regression parameters can be obtained by maximising the prospective
likelihood of the form pr (D|X, d=1), where d is the indicator of whether or not a subject
has been selected in the case-control sample and pr(d=1|D), the probability of selection
of a subject given his/her disease status, is fixed at its asymptotic value, which in turn is
proportional to m

D
. Similarly, Lemma 2 shows that the maximum likelihood estimator

of the regression parameter under the gene-environment independence assumption can



404 N C  R J. C

be obtained by solving score equations corresponding to the prospective likelihood
P*
DG

(E)=pr (D, G|E, d=1). For derivation of the asymptotic distribution theory, however,
we will show later that P*

DG
(E) cannot be treated as an ordinary likelihood.

For computational convenience we consider further reparameterisation of the problem.
Let G=g

0
define a reference category for the genetic exposure G. We can now write

P*
ij
(e
k
, c, m)=

exp{h
ij
(e
k
; c, m)}

1+W
ij:(ij)N(0,0)

exp{h
ij
(e
k
; c, m)}

, (5)

where

h
ij
(e
k
; c, m)= logq P*ij (ek ; c, m)P*

00
(e
k
; c, m)r

= i{b
0
+ log (m

1
/m
0
)}+ im(g

j
, e
k
; b
1
)+ log{q

j
(h)/q
0
(h)}

+ logC1+exp{b0+m(g
0
, e
k
; b
1
)}

1+exp{b
0
+m(g

j
, e
k
; b
1
)}D . (6)

Thus, L *(c, m)=W
ijk

n
ijk
log P*

ij
(e
k
; c, m) depends on m0 and m1 only through the parameter

k=b0+ log(m1/m0 ). Moreover, since

∂
∂k

L *(c, k)=n
1++
−∑
k
∑
j

n
++k

P*
1j

(e
k
, c, m),

it follows that k@ (c)=b0+ log{m@1 (c)/m@0 (c)}, where m@1 (c) and m@0 (c) are defined in equation (4),
will satisfy the equation (∂/∂k)L *(c, k)=0. Thus, the semiparametric maximum likelihood
estimate of c can be obtained by solving the equation ∂L *(c, k)/∂(c, k)=0 jointly with
respect to c and k.
Estimation of b0 in the above approach requires special attention. From the expression

for h
ij
(e
k
; c, m) given in (6), it can be seen that the intercept parameter b0 is involved in

L *(c, k) not only through k but also through the term

t(e
k
, g
j
, b
0
, b
1
)= logC1+exp{b0+m(g

0
, e
k
; b
1
)}

1+exp {b
0
+m(g

j
, e
k
; b
1
)}D .

Thus, in principle, b0 is identifiable from L *(c, k) independently of the parameter k. How-
ever, for diseases that are rare for all combinations of g

j
and e

k
, that is t(e

k
, g
j
, b0 , b1 )j0

for all j and k, there would be little information about b0 from L *(c, k) that is not absorbed
in k. Since the corresponding information matrix is nearly singular, direct optimisation
of L *(c, k) with respect to b0 using standard methods such as Newton–Raphson can be
numerically unstable. To overcome this problem, one strategy that we have found useful
is to consider the profile likelihood of b0 obtained as L *{b0 , b

@
1 (b0 ), h

@ (b0 ), k@ (b0 )}, where
{b@1 (b0 ), h

@ (b0 ), k@ (b0 )} denotes the solution of the equation ∂L *(b0 , b1 , h, k)/∂(b1 , h, k)=0
for fixed b0 . One can then perform a one-dimensional grid search for the optimal value
of b0 that maximises L *{b0 , b

@
1 (b0 ), h

@ (b0 ), k@ (b0 )}, possibly on a fixed interval of values.
In the above approach, for rare diseases, the estimate of the parameter b0 itself can
be expected to be imprecise because of intrinsic noninformativeness of the retrospective
likelihood. Much more precise estimation of b0 is possible when the marginal probability
of the disease, pr(D=1), in the underlying population is known. We can then fix the
parameters m

i
for i=0, 1 in L *(c, m0 , m1 ) at their true values n

i++
/{N pr (D= i )} for
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i=0, 1, respectively. In the corresponding expression for h*
ij
(e
k
, c, m) given in (6), log(m1/m0 )

will be fixed and b0 will be identifiable from the first term of (6) itself. In this case,
the parameterisation g={b0 , b1 , h, k=b0+ log(m1/m0 )} is unnecessary and instead the
original parameterisation g= (b0 , b1 , h) should be used. Hereafter, we will use the generic
notation g so that our results are valid for both the cases of pr (D=1 ) being known and
pr(D=1) being unknown.

2·3. Asymptotic theory

In this section, we study the asymptotic properties of the semiparametric maximum
likelihood estimator of g. Since we have shown that the estimator can be obtained by
solving the equation ∂L *(g)/∂g=0, the asymptotic properties can be studied by estimating-
equation theory. Since L *(g)=W

ijk
n
ijk
log P*

ij
(e
k
, g), where P*

ij
(e
k
, g) is defined in (5), the

estimating function ∂L *(g)/∂g can be expressed as

∂L *

∂g
=∑
ijk

n
ijkC∂hij (ek ; g)∂g

−∑
i∞j∞

exp{h
i∞j∞

(e
k
; g)}

W

i◊j◊
exp{h

i◊j◊
(e
k
; g)}

∂h
i∞j∞

(e
k
; g)

∂g D
= ∑
N

u=1
C∂hDuGu (Eu ; g)∂g

−E*
DGq∂hDG (E; g)

∂g KE=E
urD , (7)

where E*
DG

( . |E) denotes expectation with respect to the joint probability distribution for
D and G given E that was defined by P* in (2). Define Y(D

u
, G
u
, E
u
; g) to be the summand

in the second expression of formula (7). We will develop the asymptotic theory in a
scenario in which the total sample size N=N0+N1 goes to infinity, but the sampling
proportions for the cases and controls, namely N0/N and N1/N, remain fixed at p1 and
p0=1−p1 , respectively. We first state a lemma, proved in the Appendix, that will be used
repeatedly in the development of the asymptotic theory, because in various places we will
need to compute expectations and limits of functions in the case-control sampling scheme.

L 3. Under the case-control sampling design described above and for any measurable
function Q(D, G, E) of data (D, G, E),

N−1 ∑
N

u=1
Q(D
u
, G
u
, E
u
)�P E*

DG
{Q(D, G, E) |E=e}h(e)dF(e),

where the convergence is in probability and h(e)=W
ij

P
ij
(e; b
0
, b
1
)m
i
q
j
(h), if we assume that

the integral in the above equation exists.

At this point, we note an important subtlety of studying asymptotic theory under
the case-control sampling design when the assumption of gene-environment independence
is made. If no assumption is made about the joint distribution of (G, E), that is the
form of H(g, e) is left completely unspecified, then from standard case-control sampling

theory it follows that N−1 WN
u=1

Q(D
u
, G
u
, E
u
)�EB

D,G,E
{Q(D, G, E)}, where the con-

vergence is in probability and where EB
D,G,E

corresponds to expectation with respect to a
joint distribution function pAr (D, G, E), so that pAr(G, E|D)=pr (G, E|D) and pAr (D)=N

D
/N.

This follows because, when the form of H is left unspecified, one can vary the para-
meters b0 and H without changing the value of the retrospective likelihood pr (G, E|D)
(Roeder et al., 1996, Lemma 1). In particular, one can choose bA0 and HB so that
pr
b
0
,b
1
,H

(G, E|D)=pr
bA
0
,b
1
,HB
(G, E|D) and pr

bA
0
,b
1
,HB
(D)=N

D
/N. However, these results do
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not hold when one assumes H to be of the form Q×F as in this case we have shown
that a andH are uniquely identifiable from the retrospective likelihood, except for some
boundary parameter values. Similarly, other standard theories for case-control sampling
may not be applicable under the gene-environment independence model.
In Lemma 4, proved in the Appendix, we state the limiting form of the second derivatives

of L *(g).

L 4. We have that

1

N

∂2L *

∂g ∂gT
�P V *

DGq∂hDG (E; g)

∂g KE=er h(e)dF(e)¬I,

in probability, where V *
DG

( . |E) denotes variance with respect to the joint probability
distribution for D and G given E that is defined by P*.

Finally, we state the main asymptotic limiting results, proved in the Appendix.

P 1. Under suitable regularity conditions, the following results hold:
(i ) the estimating equations ∂L */∂g¬WN

i=1
Y(D
i
, G
i
, E
i
; g)=0 have a unique, consistent

sequence of solutions, {g@N}
N�1
;

(ii ) if V=W1
d=0
m
d
[E{Y(D, G, E) |D=d}]E2, then ND (g@N−g0 )�N(0, S ) in distribution,

with

S=I−1−I−1VI−1. (8)

3. E

3·1. Population stratification

Although genetic susceptibility and environmental exposures are unlikely to be causally
related at an individual level, these factors may be correlated at a population level because
of their dependence on other factors, such as ethnicity. In this section, we briefly describe
how to generalise our methods to handle ‘population stratification’. Most of the details
and proofs of the theoretical results follow from straightforward generalisation of the
results derived in § 2.
We will assume that G and E are independent conditional on a set of variables S

so that the joint distribution of G, E and S is given by the product form H(g, e, s)=
Q
s
(g)×F(e, s), where Q

s
(g) corresponds to the distribution of G given S=s and F(e, s)

denotes the joint distribution of E and S. The distribution function F(e, s) will be treated
nonparametrically. Let pr (G=g

j
|S=s) be denoted by q

j
(s; h) with h being a fixed set of

parameters characterising the conditional distribution. If S involves only discrete variables
that define a relatively small number of strata, then no modelling of pr(G=g

j
|S=s) is

necessary and hmay denote the vector of conditional probabilities themselves. If S involves
a relatively large number of variables, possibly including continuous ones, parametric
modelling of the distribution pr(G|S) will be necessary. When G is a binary variable
indicating the presence or absence of a certain genetic variation, for example, pr(G|S)
can be parametrically specified through a logistic regression model. We further assume
that the disease-risk model is given by pr(D=1|G, E, S)=H{b0+m(G, E, S; b1 )}. Thus,
we allow the stratum variables S to be covariates of interest in the disease model.
Let (e

k
, s
k
), for k=1, . . . , K, be the unique observed values for (E, S) and let n

ijk
denote

the number of subjects in the data with D= i, G= j and (E, S)= (e
k
, s
k
). As before, let

m
i
=n
i++

/{N pr (D= i )}.
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With this notation, the results of Lemma 4 can be generalised to show that the semi-
parametric maximum likelihood estimator of c= (b0 , b1 , h) can be obtained by solving
the equation ∂L *(c, m)/∂(c, m)=0 jointly with respect to (c, m), where

L *(c, m)=∑
ijk

n
ijk
log P*

ij
(e
k
, s
k
; c, m)

and P*
ij
(e
k
, s
k
; c, m) is defined by formula (2) with P

ij
(e
k
, b0 , b1 ) and q

j
(h) replaced by

P
ij
(e
k
, s
k
, b0 , b1 ) and q

j
(s; h), respectively. Moreover, P*

ij
(e
k
, s
k
; c, m) can be written in

the form of expression (5) with h
ij
(e
k
; c, m) replaced by h

ij
(e
k
, s
k
; c, m), which in turn

is defined by equation (6) with q
j
(h)/q0 (h) and m(g, e

k
; b1 ) replaced by q

j
(s; h)/q0 (s; h)

and m(g, e
k
, s
k
; b1 ), respectively. All the theory that we developed in § 2·3 can now be

generalised by replacing E with E∞= (E, S) and q
j
(h) by q

j
(s; h) everywhere.

3·2. Frequency-matched case-control studies

In this section, we comment briefly on the modifications needed for the proposed
methodology while dealing with frequency-matched case-control studies in which controls
are selected in numbers proportional to the number of cases within strata defined by some
matching variables W . The problem of individually-matched case-control studies is
addressed in a separate article (Chatterjee et al., 2005). Let W=w

m
(m=1, . . . , M )

denote M strata used for matching. To allow for factors, such as race, which may be
candidates for both matching and population stratification, we write W= (W S, W S9 ), so
that W S represents the elements of W that are included in S, the factors for population
stratification. Similarly, we write S= (SW , SW9 ), so that SW denotes elements of S that are
included in W . We will assume that G is independent of (E, W S9 ) conditional on S. We
further assume that the regression model is given by

pr (D=1|G, E, SW9 , W )=H{b
0W
+m(G, E, SW9 , W ; b1 )},

so that it corresponds to the standard practice of allowing for an independent intercept
term for each level of the matching variable W=w. Let b0= (b01 , . . . , b0M ) be the vector
of intercept parameters corresponding to the M different values of W .
With the above notation and definitions, the retrospective likelihood for the matched

case-control design can be written as

lMCC= a
N
0
+N
1

i=1
pr (G

i
, E
i
, SW9
i
|D
i
, W
i
),

where the conditioning on (D, W ) represents the fact that in a matched case-control
design subjects are selected into the study based on both the disease status D and the
matching variable W . The semiparametric maximum likelihood estimator of c= (b0 , b1 , h)
that leaves the joint distribution of (E, S, W ) completely unspecified can be derived by
following techniques of §§ 2·2, 2·3 and 3·1, with m

i
replaced throughout by m

wi
, where

m
wi
=n
wi++

/{N pr (D= i |W )}, in which n
wi++

is the number of subjects with D=i
and W=w in the sample. In particular, we can show that the semiparametric maxi-
mum likelihood estimate of c can be obtained by jointly solving a set of equations
of the form ∂L *(c, k)/∂(c, k)=0, where k= (k1 , . . . , kM ) with km=b0m+ log(m1m/m0m ) and
L *(c, k)=W

ijwk
n
wijk
log P*

wij
(e
k
, s
k
; c, m), in which P*

wij
(e
k
, s
k
; c, m) is defined by formula (5)
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with h
ij
(e
k
; c, m) replaced by

h
wij

(e
k
, s
k
; c, m)= logq P*wij (ek , sk ; c, m)P*

w00
(e
k
, s
k
; c, m)r

= ik
w
+ im(g

j
, e
k
, sW9
k

, w; b
1
)+ log{q

j
(s
k
; h)/q

0
(s
k
; h)}

+ logC1+exp{b0w+m(g
0
, e
k
, sW9
k

, w; b
1
)}

1+exp{b
0w
+m(g

j
, e
k
, sW9
k

, w; b
1
)}D . (9)

Using the structure of h
wij
( . ) we observe that b

0w
is involved in L *(c, k) not only

through k
w
but also through the last term of expression (9), which we will denote by

t(g
j
, e
k
, sW9
k

, w; b
0w

, b
1
). For rare diseases, however, for which t(g

j
, e
k
, sW9
k

, w; b
0w

, b
1
)j0

for all values of j and k there would be little information about b
0w
from L *(c, k) that is

not absorbed in k
w
. In most case-control studies the matching factor W consists of basic

demographic factors such as race, sex and age-groups, for which pr(D=1|W ) is available
externally, for example from a population registry. In this case, m

wi
can be treated as a

fixed parameter in the definition of k
w
and hence b

0w
can be identified through k

w
itself.

Use of external information about pr (D=1|W ) is recommended as it would not only
resolve any numerical problems that may arise with estimation of the barely identifiable
parameters, but would also improve efficiency of estimation of the other regression
parameters of interest. An alternative solution for diseases that are extremely rare,
such as the example of ovarian cancer we consider in § 5, is to ignore the term
t(g
j
, e
k
, sW9
k

, w; b
0w

, b
1
) in the calculations. Under the rare-disease assumption, we note

that the functional form of L * becomes exactly the same under frequency-matched and
traditional unmatched case-control sampling designs, and thus the estimates under the
matched design can be obtained by the method described in § 2 for the traditional case-
control design with a disease risk model that allows for an independent intercept term for
each level of the matching variable W . The estimator for the main effects for W would
yield an unbiased estimator not of b

0w
but of k

w
.

4. S 

4·1. T he factors G and E are independent

In the first experiment, we study the relative performance of the standard logistic
regression analysis and the proposed semiparametric maximum-likelihood estimator under
the gene-environment independence model. We assumed that the genetic covariate G is a
binary variable, where for example G=1 or G=0 corresponds to presence or absence of
a genetic mutation, respectively. We considered two scenarios: (a) pr(G=1)=0·065 and
(b) pr (G=1)=0·26, corresponding to a rare and a common genetic mutation, respectively.
We generated the environmental covariate as E=min(10, X ) where X follows the log-
normal distribution for which the mean and variance of the underlying normal distribution
are 0 and 1. Given the values of (G, E), we generated a binary disease outcome D
from the logistic regression model logit{pr(D |G, E)}=b0+bGG+bEE+bGEG×E, with
(b
G
, b
E
, b
GE
)= (0·26, 0·10, 0·3). We choose the intercept parameter b0 to be, respectively,−3·2 and −3·45 for scenarios (a) and (b) so that in both cases the marginal probability

of the disease in the population is 0·05. The parameter values were chosen to reflect modest
main effects for both G and E, but strong interaction between G and E. For example, the



409Case-control studies of gene and environment

odds ratio associated with the lower versus the upper quartile of the distribution of E was
1·3 for G=0 and 3·1 for G=1. The marginal odds ratios for G and E were 2·6 and 2·5,
respectively. In each replication of our simulation experiment, we generated data for
500 cases and 500 controls from the above model by sampling the cases and controls
from a larger random sample of subjects. We analyse each such case-control dataset using
three procedures: standard logistic regression; 1 , which denotes the proposed semi-
parametric maximum likelihood method under the gene-environment independence model
when pr (D=1) is known; and 2 , which denotes the same procedure but with
pr(D=1) unknown.
Table 1 summarises the simulation results for scenarios (a) and (b). Based on these

simulation results we make the following key observations. First, as expected from theory,
both the logistic regression and the semiparametric maximum likelihood estimators under
the correct conditional independence assumption provide essentially unbiased estimators
of all regression parameters. Secondly, the variance ratios of the semiparametric maxi-
mum likelihood and logistic regression estimator show that when the gene-environment
independence assumption is exploited there is a major efficiency gain for the estimation
of b
G
and b

GE
; the gain is quite dramatic for estimation of the interaction parameter b

GE
and is larger for the study of the rare mutation than for the common mutation. Thirdly,
under the gene-environment independence model, incorporating the known pr(D=1)
in the estimation leads to major efficiency gains in the estimation of the regression para-
meters, the gain being particularly striking for b

GE
. This observation is particularly

interesting given that it is well known that in the standard logistic regression setting,
when no assumption is made about the exposure distribution, use of the known marginal
probability of the disease in the population only identifies the intercept parameter of the
logistic regression model, but does not have any effect on the efficiency of the estimators
of the other regression parameters of interest. Fourthly, comparison of the empirical
standard errors and the means of the estimated standard errors of the semiparametric
maximum likelihood estimator shows that the proposed sandwich variance estimator
performs well for realistic parameter values and modest sample sizes.

Table 1. Simulation study for studying bias and eYciency of semiparametric maximum-
likelihood estimators when G and E are independent: 1 , the proposed method when
the marginal probability pr (D=1) is known; 2 , the proposed method when pr (D=1)

is unknown

Bias Var ratio

Empirical  Estimated Logistic 1
Logistic

2
Logisticregres. 1 2 1 2 1 2

Scenario (a): pr(G=1)=0·05
b
G

0·033 0·021 0·034 0·629 0·818 0·282 0·322 0·275 0·327
b
E

−0·002 0·000 0·002 0·900 0·991 0·035 0·037 0·034 0·035
b
GE

−0·032 −0·009 −0·023 0·264 0·535 0·090 0·128 0·087 0·126
h · 0·020 0·021 · · 0·164 0·187 0·167 0·194

Scenario (b): pr(G=1)=0·2
b
G

0·016 0·004 0·015 0·709 0·905 0·175 0·198 0·171 0·195
b
E

0·001 0·002 0·001 0·769 0·987 0·038 0·043 0·037 0·041
b
GE

−0·013 −0·006 −0·011 0·360 0·717 0·053 0·075 0·052 0·074
h · 0·003 −0·001 · · 0·092 0·105 0·095 0·108

regres., regression; Var, variance; , standard error.
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The above simulation set-up also allows us to study bias in parameter estimation in
existing approximate methods that rely on the rare-disease assumption. Schmidt & Schaid
(1999) noted that, even for rare diseases like breast cancer, the ‘case-only’ analysis
approach to interaction that is based on the rare disease assumption can seriously under-
estimate the logistic regression interaction parameters for studying major susceptibility
genes such as the BRCA1 and BRCA2 genes, which are known to confer a very high
risk of breast and ovarian cancer. Our simulation gives an alternative relevant scenario
involving a continuous environmental exposure variable where the gene or the environ-
mental exposures themselves do not pose a very high risk of the disease, but among the
mutation carriers there is a strong dose-response relationship between the risk of the
disease and the continuous exposure. We examined the bias in estimation of the interaction
parameter b

GE
in two approximate methods, the case-only analysis (Piegorsch et al., 1994)

and the combined control group approach of Modan et al. (2001). We did not implement
the log-linear model approach for categorical covariates (Umbach & Weinberg, 1997) as
in our simulation the environmental covariate Ewas continuous. We found that on average
the case-only estimates of b

GX
were 0·189 and 0·212 in scenarios (a) and (b), respectively.

The corresponding average estimates obtained from the approach of Modan et al. are
0·194 and 0·229, respectively. Given that the true value of the interaction parameter
was 0·30, in each of the scenarios we considered, the approximate methods seriously
underestimate the odds-ratio interaction parameter.

4·2. Factors G and E are independent conditional on S

We considered a second simulation experiment in which the independence assumption
between G and E holds only within subpopulations defined by a stratum variable S. As
before, we considered two scenarios, one for a rare mutation and one for a common
mutation, but in each situation we now assume that the gene frequency differs across
strata defined by S: we took h1=pr(G=1|S=1)=0·05 and h2=pr(G=1|S=2)=0·1 in
scenario (a) and h1=pr(G=1|S=1 )=0·2 and h2=pr(G=1|S=2 )=0·4 in scenario (b).
We assumed that pr(S=2 )=0·3. Also, as before, we generated the environmental covariate
as E=min(10, X ), where X follows a log-normal distribution, but we allowed the mean
parameter for the underlying normal distribution to be different across strata defined
by S. In particular, we used the values of m1=0, m2=0·67 and s1=s2=1 so that the 75th
percentile of the distribution of X|S=1 corresponds to only the 50th percentile of the
distribution of X|S=2. We also assumed that the stratification variable S is a risk factor
for the disease and hence is part of the risk model. We allowed both a main effect, b

S
, and

an interaction of S with G, b
GS
, in the disease risk model with the true parameter values

being log(2) and log(3), respectively. As before, we assumed (b
G
, b
X
, b
GX
)= (0·26, 0·1, 0·3).

We generated 500 simulated datasets, each dataset consisting of observations on (G, X, S)
for 500 cases and 500 controls. We analysed each such case-control dataset using three
procedures: standard logistic regression; () , which denotes the proposed method
under the correctly specified independence model that assumes G is independent of E
given S; and () , based on a misspecified independence model that assumes of G
is independent of (E, S). For both of the latter two procedures, we assumed pr (D) was
known.
The results in Table 2 stimulate the following key observations. First, when the correct

model is that G and E are independent given S, but we assume the misspecified model in
which G is independent of both E and S, estimators of b

G
, b
S
and b

GS
can be seriously
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Table 2. Simulation study for studying bias and eYciency of semiparametric maximum-
likelihood estimators when G and E are independent conditional on a stratification variable S:
() , our method when the probability model for G and E given S is correctly specified;

() , our method when this model is misspecified

Bias  ratio Empirical  Estimated 

Logistic      ()

Logistic

()

Logisticregres. () () () () () ()

pr(G=1|S=1)=0·05 and pr(G=1|S=2)=0·1
b
G

0·036 0·016 0·518 0·680 1·605 0·397 0·323 0·393 0·338
b
E

−0·002 −0·001 0·008 0·827 0·847 0·030 0·029 0·029 0·029
b
S

−0·008 −0·009 0·078 0·981 1·195 0·153 0·150 0·154 0·150
b
GE

−0·044 −0·021 −0·026 0·273 0·242 0·088 0·081 0·088 0·085
b
GS

−0·005 0·018 −0·940 0·879 3·386 0·508 0·338 0·481 0·343

pr(G=1|S=1)=0·2 and pr(G=1|S=2)=0·4
b
G

0·014 0·017 0·473 0·874 3·292 0·278 0·263 0·269 0·252
b
E

−0·002 0·001 0·016 0·736 0·865 0·037 0·036 0·039 0·038
b
S

0·003 0·003 0·342 0·976 3·235 0·221 0·213 0·222 0·211
b
GE

−0·007 −0·007 −0·025 0·472 0·569 0·054 0·054 0·054 0·056
b
GS

−0·025 −0·025 −1·101 0·953 11·468 0·326 0·273 0·337 0·269

regres., regression; , mean squared error; , standard error.

biased, with the bias of the interaction parameter being the most striking. Secondly, the
ratio of the mean squared error for () and for the logistic regression analysis
shows that when the correct conditional independence model was exploited there was a
major efficiency gain in estimating b

G
, b
E
and b

GE
, the gain being most dramatic for

estimation of b
GE
. The corresponding ratio of the mean squared errors for ()

shows that for those parameters, where () produces large bias, the mean squared
error for () tends to be much larger than that for the logistic regression analysis.
For the parameters b

E
and b

GE
, however, where there is very little bias in () ,

both () and () have similar mean squared errors. Thus, if we adjust
properly for the stratification variable S in the independence model, we can correct for bias
in estimating b

G
, b
S
and b

GS
and yet can retain the efficiency advantage resulting from

the gene-environment independence assumption. Thirdly, comparison of the empirical
standard errors and the means of the estimated standard errors of the semiparametric
maximum likelihood estimators shows that the proposed variance estimator performs well
under the population-stratification model.

5. I   

In this section, we apply the proposed methodology to data from a population-based
case-control study based on all ovarian cancer patients identified in Israel between 1March
1994 and 30 June 1999 (Modan et al., 2001). For each case, two controls were selected
from the central population registry matched by age within two years, area of birth and
place and length of residence. Blood samples were then collected from the cases and the
controls in order to test for the presence of mutation in the two major breast and ovarian
cancer susceptibility genes BRCA1 and BRCA2. In addition, the subjects were interviewed
to collect data on reproductive/gynaecological history such as parity, number of years of
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oral contraceptive use and gynaecological surgery. The main goal of the study was to
examine the interplay of the BRCA1/2 genes and known reproductive/gynaecological risk
factors of ovarian cancer.
Modan et al. (2001) studied the interaction between BRCA1/2 mutations and two

known reproductive risk factors for ovarian cancer, namely oral contraceptive use and
parity. They pointed out that, since BRCA1/2 mutations were very rare among ovarian
cancer controls, traditional logistic regression analysis would yield very imprecise estimates
of the various regression parameters of interest. Thus they considered alternative efficient
methods of analysis that exploit the likely scenario that the status of BRCA1/2 mutations
is independent of the reproductive risk factors. In particular, they estimated the odds ratio
of ovarian cancer associated with the reproductive risk factors separately for carriers and
non-carriers by using the combined common control group approach that we described
in § 1. In addition, to test if the effects of the reproductive risk factors are different for
BRCA1/2 mutation carriers and non-carriers, the authors performed the ‘case-only’
analysis of interaction (Piegorsch et al., 1994).
We reanalysed the data using the proposed maximum likelihood method under the gene-

environment independence assumption. Our analysis included 832 cases and 747 controls
who did not have bilateral oophorectomy, were interviewed for risk factor information
and successfully tested for BRCA1/2 mutations. There were 240 carriers, but only 12 among
the controls. Similarly to Modan et al., we coded reported parity values greater than 10 to
be 10. In addition, we deleted three women with extreme oral contraceptive use, of at
least 250 months, as they became highly ‘influential’ for the estimation of regression
parameters. We considered the following logistic regression model for risk of ovarian
cancer:

logit{pr(D=1)}=b
0
+bBRCA1/2I(BRCA1/2 )+bOC+bParParity

+bBRCA1/21OCI(BRCA1/2 )1

+bBRCA1/21ParI(BRCA1/2 )1Parity+cTZ,

where I (BRCA1/2) denotes the 0–1 indicator of carrying at least one BRCA1/2 mutation,
 denotes years of oral contraceptive use, Parity denotes the number of children and Z
denotes the set of all co-factors that Modan et al. used to adjust their regression analysis;
Z included the main effects of age, as a categorical variable defined by decades, ethnic
background, being Ashkenazi or non-Ashkenazi, the presence of personal history of breast
cancer, , history of gynaecological surgery, and family history of breast or ovarian
cancer, , where 0 corresponds to no history in the family, 1 to one breast cancer case
in the family and 2 to ovarian cancer or two or more breast cancer cases in the family.
Next we considered an appropriate model for gene-environment independence. Clearly,

a personal history of breast cancer and family history of breast/ovarian cancer cannot be
assumed to be independent of BRCA1/2 status as mutations in these genes are known to
increase dramatically the risk of these familial cancers. Moreover, BRCA1/2 mutation
frequency has been reported in the past to vary by age and ethnicity. Given that some
of these factors can also be related to oral contraceptive use and parity, we make the
assumption of independence between mutation and reproductive risk factors only con-
ditional on S= (Age, Ethnicity, , ). Given that the total number of strata defined
by S is large, estimation of the genotype frequencies individually for each stratum would
be imprecise. Thus, we considered the following parametric model for specification of the
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carrier frequencies:

logit{pr(G=1|S)}=h
0
+hAgeI(Age�50)+hEthI(Non-Ashkenazi)

+hPHI(=1)+h1FHI(=1)+h2FHI(=2). (10)

Modan et al. had reported a total of 1326 cases of peritoneal or epithelial ovarian
cancer during the five-year study period, in a baseline population of approximately
1·5 million. Thus, the marginal probability for the disease for the underlying population
is small, at about pr (D=1)=8·7×10−4. Therefore, based on the discussion in § 3·2, we
note that we can analyse data from this age-matched case-control study using methods
developed for ordinary case-control studies as long as we allow for an independent
intercept term for each of the age-strata that were used for matching. Although the cases
and controls were matched to within two years, to avoid problems with sparse cells we
allowed an independent intercept term only for every 10-year interval. This approximation,
the validity of which requires assumptions similar to those required for unconditional
logistic regression analysis of matched data, is reasonable for this study.
Table 3 shows the estimates and 95% confidence intervals corresponding to the

regression parameters associated with the main covariates of interest: BRCA1/2, oral
contraceptive use and parity. Two sets of estimates and confidence intervals are shown,
one corresponding to an ordinary logistic regression analysis of the case-control data and
the other corresponding to our method estimated under the conditional gene-environment
independence model. Based on the ordinary logistic regression estimates of the main
effect parameters, we first observe that, among childless women, for whom Parity=0, and
who never used oral contraceptives, BRCA1/2 mutation is associated with a dramatic
increase in risk of ovarian cancer, with odds ratio exp(3·58)=35·87. Among BRCA1/2
non-carriers, both higher parity and longer use of oral contraceptives are associated
with decreased risk of ovarian cancer, with the associated odds ratio parameters esti-
mated to be respectively 0·95 and 0·94 for Parity; both of these results are borderline
statistically significant at the 5% level. The estimates of the interaction parameters
from the logistic regression analysis suggest that, among BRCA1/2 carriers, the risk of
ovarian cancer decreases even more strongly with increasing parity, with odds ratio
exp(−0·058)×exp(−0·199)=0·77, but increases slightly with longer oral contraceptive
use, with odds ratio exp(−0·047)×exp(0·056)=1·01. However, the confidence intervals
for the interaction parameters are very wide, suggesting that the point estimates are
imprecise and hence hard to interpret.

Table 3. Parameter estimates and confidence intervals for the risk model in the
Israeli ovarian cancer study

Ordinary logistic regression  with - independence given S
Estimate 95%  Estimate 95% 

BRCA1/2 3·58 (2·27, 4·89) 3·15 (2·51, 3·79)
 use −0·047 (−0·098, 0·003) −0·051 (−0·102,−0·001)
Parity −0·058 (−0·121, 0·004) −0·061 (−0·125, 0·002)
1BRCA1/2 0·056 (−0·149, 0·260) 0·089 (0·021, 0·150)
Parity1BRCA1/2 −0·199 (−0·626, 0·229) −0·036 (−0·141, 0·068)

, maximum likelihood estimate; -, gene-environment; , confidence interval;
S= (Age, Ethnicity, Personal history of breast cancer, Family history of breast/ovarian cancer);
, oral contraceptive.
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Inspection of the parameter estimates from the semiparametric maximum likelihood
method with the gene-environment independence model suggests similar types of associ-
ation to those from the logistic-regression analysis. However, the precisions of the estimates
are greater for all the terms involving BRCA1/2, the gain being particularly striking
for the interaction terms. In particular, under the gene-environment independence model,
the interaction between BRCA1/2 mutation and oral contraceptive use is statistically
significant, suggesting that, unlike for non-carriers, the risk of breast cancer for carriers
did not decrease with increasing oral contraceptive use. For carriers, the association
between oral contraceptive use and risk of ovarian cancer, if any, is positive, with odds
ratio exp(−0·051+0·089)=1·034, and 95% confidence interval (0·977, 1·095). The inter-
action estimate between Parity and BRCA1/2 suggests that the decrease in risk of ovarian
cancer associated with increased parity is modestly larger for carriers than for non-carriers,
but this difference is not statistically significant.
Table 4 shows the maximum likelihood estimates corresponding to the model for carrier

frequency pr(G=1|S). Although these parameters do not have any causal interpretation
and are not generally of biological interest, they can be useful for descriptive purposes.
For example, as expected, prevalence of a BRCA1/2 mutation is significantly higher among
women with either a personal history of breast cancer or family history of breast/ovarian
cancer. Moreover, we observe that BRCA1/2 mutation frequency is significantly lower
among non-Ashkenazi Jewish women compared to Ashkenazi women. There is also some
evidence, with p-value=0·05, that carrier frequency was smaller among women older than
50 than among younger women.

Table 4. Parameter estimates and confidence intervals for the logistic regression model
for pr (G=1|S) in the Israeli ovarian cancer study, with risk factors ethnicity, age,
personal history of breast cancer, family history of breast cancer and family history of

breast/ovarian cancer

h0 hEth hAge hPH h1FH h2FH
Estimate −3·78 −1·31 −0·28 1·59 0·71 1·32
95%  (−4·40,−3·16) (−1·74,−0·890) (−0·638, 0·071) (1·01, 2·18) (0·20, 1·21) (0·74, 1·90)

, confidence interval.

A version of the dataset is available together with the software from the website
http://dceg.cancer.gov/people/ChatterjeeNilanjan.html under the software link. This data-
set consists of the real data on disease status, D, and non-genetic co-factors,X. For reasons
of privacy, however, the real genetic data are not publicly available. Instead, the data
consist of simulated genetic data, G, generated using the conditional distribution of
[G|D, X] as specified by the parameter estimates obtained from the real data.

6. D

Case-control studies with modest sample sizes often have very little power for studying
interaction and other hypotheses of interest using the standard logistic regression analysis.
In such situations, epidemiological researchers currently have been prone to exploit the
efficiency advantage from the gene-environment independence assumption through the
case-only approach that yields estimate of the multiplicative interaction parameter in
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the logistic regression model under the rare disease assumption (Piegorsch et al., 1994).
This analysis, however, is limited. It discards all the information from controls and hence
loses the ability to estimate the main effect parameters of the logistic regression model
which are required for deriving the various alternative scientific parameters of interest.
In this paper, we have considered estimation of regression parameters under the gene-
environment independence assumption in a very general logistic regression model that
uses data from both cases and controls and hence can estimate all of the parameters of
interest.
However, we recommend cautious use of the gene-environment independence

assumption. Simulation studies reported in § 4·2, as well as those in Albert et al. (2001),
show that methods that use the gene-environment independence assumption when the
assumption is not true may produce severe bias in parameter estimation. We have pro-
posed a possible remedy for minimising such bias by explicitly accounting for observable
factors, denoted by S, that can potentially be related to both G and E.
Methods for exploiting the gene-environment independence assumption could be

practically useful without concerns about bias in many important situations. For
‘randomised exposure’ such as the treatment assigned in a randomised trial, the gene-
environment independence assumption would be satisfied by the definition of random-
isation. The assumption of gene-environment independence is also very likely to be
satisfied for external environmental agents, e.g. carcinogens from a nearby chemical
factory, exposure to which is not directly controlled by an individual’s own behaviour.
When an exposure depends on subject’s individual behaviour, on the other hand, the
independence assumption should be used more cautiously. There could be spurious
association between G and E for established risk factors such as smoking because family
history of lung cancer, which is associated with G, may also influence a subject to change
his/her smoking behaviour. There could also be direct association. For example, genetic
polymorphisms in the smoking metabolism pathway may not only modify a subject’s risk
from smoking, but may also influence a subject’s degree of addiction to smoking.
When violation of the gene-environment independence seems plausible, because of direct

or indirect association, effort should be made to validate the assumption empirically.
However, tests for independence within a given study may have very little power, and
empirical evidence from external data sources should be investigated. When substantial
uncertainty remains about the validity of the assumption because of lack of empirical
data or for other reasons, positive findings based on proposed methodology should be
considered as preliminary screen which should be pursued with high ‘priority’ in future
epidemiological studies.
In practice, genetic and/or environmental exposure data can be also missing on certain

study subjects, by design or by change. Umbach & Weinberg (1997) described a number
of alternative designs in which genetic and/or environmental exposure data are collected
only on a subset of controls. They showed how different parameters of interest can be
estimated under different designs using the approximate log-linear model approach for
categorical variables. Further research is warranted to extend the proposed maximum-
likelihood methodology to handle missing data in genetic as well as environmental
exposures. Such extensions will also be useful to haplotype-based associated studies where
genetic effects are modelled in terms of ‘haplotypes’, the combinaton of alleles at multiple
loci in a single chromosome, but the exact haplotype configuration in two chromosomes
of some subjects cannot be derived with certainty from available locus-specific genotype
data.
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A

Proofs

Proof of L emma 1. By Lemma 1 of Roeder et al. (1996), it follows that the probability equality
of our Lemma 1 holds only if
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.

If H is of the product form Q×F, H*NH could be of the product form only if b1µB0. Thus,
if b11B0, then F=F* and Q=Q*. Moreover, since H*=H, it also follows that b0=b*. %

Proof of L emma 2. By equating the partial derivatives of the loglikelihood given in equation (1)
with respect to d1 , . . . , dK , we can easily show that d

@
k
(c) will satisfy the equation
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If we now substitute the left-hand side of (A1) for d
k
into the loglikelihood of the data defined

in (1), we obtain

L {c, d@ (c)}=∑
ijk

n
ijk
log P

ij
(e
k
, b
0
, b
1
)+∑
j

n
+j+
log q

j
(h)

+∑
k

n
+k+
log

n
++k

W

ij∞
P
ij∞

(e
k
; b
0
, b
1
)m@
i
(q
j∞
(h)
−∑
i

n
i++
log

n
i++
m@
i
(c)

,

which is equivalent to L *{c, m@ (c)} up to constant terms. Moreover, if we substitute (A1) into (A2)
it can be seen that m@

i
(c), for i=0, 1, are given by solutions of the equations

n
i++
=∑
k∞

n
++k∞
W

j∞
P
ij∞

(e
k∞
; b)q
j
(h)m
i

W

ij
P
ij
(e
k∞
; b)q
j
(h)m
i

(i=0, 1),

which are in turn equivalent to the equations given in (4). Thus Lemma 2 is proved. %

Proof of L emma 3. First, we note that, by the law of large numbers,
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Using Bayes’ rule we can write

pr (D=d)E{Q(D, G, E) |D=d}=P C∑
j

{Q(d, g
j
, e)q
j
(h)}D dF(e).
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Thus, we can write the limiting expression in (A3) as
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The proof of Lemma 3 follows if we note that P*
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(e; c, m)=m

i
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ij
(e; b
0
, b
1
)q
j
(h)/h(e). %

Proof of L emma 4. By applying the chain rule of derivatives to formula (7) we have
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Using Lemma 3, we can now show that the first term in the above expression goes to zero in
probability. Furthermore, with some algebra it can be shown that
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The proof of Lemma 4 now easily follows from the result of Lemma 3. %

Proof of Proposition 1. (i) The main condition for consistency, that is the asymptotic unbiasedness
of the score equation WN

i=1
Y(D
i
, G
i
, E
i
; g)=0, follows from direct application of Lemma 3. In

Lemma 4, we have further shown that −∂/∂g{N−1 WN
i=1
Y(D
i
, G
i
, E
i
; g)}�I in probability,

where I is a positive definite matrix. Moreover, from (6) it is easy to see that the first and second
derivatives of h

ij
(E; g) with respect to g can be uniformly bounded in an open neighbourhood of

g0 . This can be used to show that the convergence in Lemma 4 holds uniformly in an open
neighbourhood of g0 . The proof now follows using results of Foutz (1977).
(ii) The asymptotic normality of the estimator follows from standard application of the central
limit theorem. To derive the form of the asymptotic variance, we need to prove that
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Let W(D; g)=E{Y(D, G, E; g) |D} and YB (D, G, E; g)=Y(D, G, E; g)−W(D; g). We can now write
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By reordering the sums and the integral in the last expression we can easily show that

C=P E*{YB E2 (D, G, E; g) |E=e}h(e)dF(e).

Since
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and E*{Y(D, G, E; g)E2 |E=e}=V *{Y(D, G, E; g) |E=e}, the proof of formula (A4) will follow if
we can show that
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To prove (A5), we first define

W (D, E; g)=E{Y(D, G, E; g) |D, E}=E*{Y(D, G, E; g) |D, E}

and note that E{W (D, E; g) |D}=W(D; g). It is easily seen that the right-hand side of (A5) can be
written as

P E*
D
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Now we observe that pr*(D|E)=pr (D|E)m
D
/h(E) and write (A7) as
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This proves (A5). The proof of (A6) follows from similar steps. %
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